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1. ASTROSPECTROSCOPY AND ITS ROLE FOR THE ASTROPHYSICS

1.1. Instrumentation and cost of the astrophysical observation
The high-resolution astro-spectroscopy has begun since the mid-30-es years of the 20th century. Then the big
diffraction spectrograph in the coude-focus of the 2.5m Mt Wilson telescope came into operation. Since that
time the evolution of the astro-spectroscopy gives us an excellent example for the art of compromise
following often mutually excluded conditions and requirements: vanishing-low energetic fluxes; more and
more severe claims to the spectral, time and space resolution; to the photometric and positional accuracy, etc.
And all this depends also on the technical and technological achievements and on some economical reasons,
as far as the astrophysical instrumentation is among the most expensive scientific tools!

Example: 2m RCC at NAO “Rozhen” costs ~5 M$ (70-es years of 20th century) and the whole Observatory
– ca. 10 M$ (in the same time, the ESO-investment in VLT – Very Large Telescope, 4 x 8.2m – was ca. 1 G$).
The annual subsidy of NAO is around 100-120 K$ and the real observing time – about 1000 hours/year.
Considering a life-time of 100 years for the telescope and constant subsidy, we obtain a cost of one observing
hour ~150 $ or ~2.5 $/min. For comparison: the telescopes of class 4-6 m spend ~15-25 $/min, VLT – 4x60
$/min; one observing night on Kecks costs 47000 $!

What we can obtain for these “prices” from the observations? In fact, every observation of an astrophysical
object is spectral one, as far as at least the detectors (including the human eye) are spectral-selective. The
difference lies mainly in the band of transparency ∆λ and in the resolving power R:

R = λ/δλ , (1.1)

where δλ is the spectral resolution, i.e., the registered by one detector’s element (pixel) spectral interval. 

Hence, the resolving power R is a measure of the possibility to register with given spectrograph close
wavelengths simultaneously. This basic spectral characteristic does not have a physical mean, but is simply a
handy scalar parameter. For observations with eye when the retina detects radiation in wide spectral interval
of ~2000 Å centred on 5500Å, R~3. The photoelectric photometry with one-channel photometer is the same,
despite more narrow filters and R~10-20.

The very spectral observation means to observe given interval wavelengths ∆λ on n elements of the detector,
i.e., one element “sees” interval

 δλ= ∆λ/n (1.2)

 and hence the resolving power will be R=n λ/∆λ.

Example: a photometer at NAO after 10-sec integration gives a signal coded by 2-byte word; then the
“price” of the information will be p≈0.2 $/byte (2.5 $/min*1/6 min / 2 byte = 0.2$/B). Our high-resolution
spectrograph for 10 min obtains a spectrum of 200 Å around 6500 Å, in n=1000 channels (pixels); the resolving
power is R=1000x6500/200=32000, and the “price” of 1 byte (considering 2-byte word)
10min*2.5$/min/1000/2≈0.01$/B. We see that the “spectral” byte is much more “cheaper” than the photometric
one. The old photographic technology needed much more time and therefore the “price” of the spectrograms was
much higher!

So, different kinds of astrophysical observations give different amount of “formal” information: from 1-2
byte (photometry) till hundreds Kb and Mb for high-resolution spectroscopy. Evidently, the economic costs
of this information could be different by orders. 

However, what about the scientific value of the different kinds (modes) of observation? Such a question is
rather relative because it is evident that the different kinds of observations are complementary each to other
giving the complex picture of the events. Let us to consider the two observational methods: photometry and
high-resolution spectroscopy. Giving us only several numbers – the brightness in wide filters – the
photometry is in the basis of any investigation! It has the most wide application, the deepest magnitude-limit
and gives the most general relations, such as HR-diagram in the form “color-color”. In fact the photometry is
an observational technology for investigation of the distribution of the energy in the continuum spectrum. It
allows an absolute calibration. Here the element that separates the requested spectral interval (from hundred
to several Å) is some kind of filters (glass, interference, etc.). Having deep limit and easily calibrated
relations between the photometric indexes and the physical parameters (temperatures, gravitation, magnetic



fields, polarization, chemical abundance, etc.) the stellar photometry is on the beginning of the study of any
unknown object while for the weakest ones it is the only applicable method!

Close to the photometry is the spectro-photometry. In fact it is realised by one-channel photometer which
scans the spectrum by “portions” (usually about 50 Å). Here the filtering element is a course diffraction
grating with low resolving power (R~100-200) and the spectral interval is separated by a slit before the
photo-cathode of the multiplier. This method also studies the stellar continuum, it is a subject of calibration
procedures and is extremely valuable for studying the distribution of the energy (e.g., needed for modeling
the stellar atmospheres).

The electromagnetic optical spectrum can be divided to the next intervals:
far (vacuum) ultraviolet (UV) – from 10 to 1850 Å;
near-UV – 1850 -  4000 Å;
visual region – 400 - 7000 Å;
near infrared (NIR) – 0.7 µ (7000  Å) - 2.5 µ;
mid-IR – 2.5µ - 50 µ;
far-IR – 50 µ -1000 µ (1 mm).

The astro-spectroscopy begins with the registration of the spectrum in many channals and can be divided
(rather provisory) by its resolving power R. Somebody considers observations with R ≤ 20000 as having
“low resolution”, with 20000 ≤ 60000 – as “middle resolution”, about R=100000 – as “high resolution” and
with R>120000 – as “super-high” resolution. These values of R correspond for lambda 5000 Å to a spectral
range per one pixel as follows: ≥0.25 Å for the low-resolution mode; 0.25-0.08 Å for the middle R, about
0.05 Å for the high-resolution mode and ≤0.05 for the super-high resolution.

It must be noted that during the “photographic” era as high-dispersion ones were consider observations with
reversed linear dispersion (see below) ∆λ ≤ 10 Å/mm. Assuming mean size of the resolving element o<1/
lhbqnmr+ vd nas`hm enq sgd qdrnkuhmf onvdq ` u`ktd Q≥14///- Sgd qdok`bhmf ne sgd ognsn,dltkrhnm vhsg
rnkhc,rs`sd cdsdbsnqr+ vghbg g`ud cnydmr ne shldr ghfgdq rdmrhshuhsx `mc `kknv vnqjhmf vhsg d`qkhdq
tmoqdbdcdmsdc RMQ+ g`r bg`mfdc sgd q`mfhmf ne sgd mnshnm enq sgd qdrnkuhmf onvdq-

Example: investigations having S/N~300 and R~100000 on IIa-O or IIIa-J astro-emulsions with 1-2 m
telescopes were possible only for Sirius, but they have need at least 30 min exposure and widening of the
spectrum’ strip to 5-6 mm on the emulsion! In the same time illuminating the whole slit-length (10 mm) of our
coude with Sirius, we obtain by LN2-cooled CCD spectrum of S/N~1000 for only 20-30 sec exposition! The
spectrum has a height of 1.75 mm (76 pxl) on the detector.

The spectral resolving power degrades by many reasons. Besides the purely physical ones (diffraction) the
others are mainly technical: the finite size of the entrance slit; the optical aberrations, defects and adjustment
errors; the characteristics of the detector (e.g., the “2-pxl” rule about the final size of the resolving element
for CCDs). In the same time, enhancing R the economic price of the spectral device also enhances
(remaining, however, a relatively small part (~10%) of the telescope’ price. So, the complete price of the
coude-spectrograph of the 2m telescope at Rozhen is ~ $500000 and the price of a modern echelle-
spectrograph is about $150000. 

But why the astrophysicists strive for greater resolving power? Evidently, because they need more and more
information about the objects they study. As many as independent channels receive simultaneously
information, so many will be its amount. The high- and super-high resolution spectroscopy is the only
observational method to obtain a detail picture of the light-intensity distribution along the wavelengths. All
branches of astrophysics need high-accuracy and with high spectral resolution observations.

1.2. Information obtained from the astrophysical objects’ radiation
The celestial bodies emite themselves or reflect other radiation and just because of that they are visible.
Every energetic flux has its own distribution along the radiation frequencies. In the ideal case it can be the
Planck distribution of an equilibrium radiation with given temperature T. Among the stars closer to the
Plank-distribution are the O- and early B-stars that have effective temperatures Te ≥ 20000 K (by the way,
the term “effective temperature” is defined just by the Planck law – it is the temperature of the black body
which total radiation is equal to the total flux from the star).  One can note, however, that all the



“temperatures” considered here and below characterise only the outermost stellar layers calling “stellar
atmosphere”. 

As colder is the star, as farther is their radiation distribution from the Planck’s one. The main reason for this
is the blanketing effect – the absorption of the light in numerous spectral lines of different neutral and of low
ionization atoms. Let’s consider an ordinary MS-star of spectral class A (Te ~ 9000 - 10000 K). Such a star
has a compact atmosphere (H~1000 km that is only 0.1-0.03% of its radius). The local temperature drops
toward the surface layers. The conventional boundary, above that the atmosphere begins, we call
“photosphere” and it can be in some way to be compared by the Earth’s surface. Of course, in the star we
have not so sharp division, on both “sides” of this boundary there is plasma and the only criterion is the
optical depth τ – a characteristic for the light intensity decreasing when the radiation passes given medium.
We have τ =1 when the intensity drops e-times (1/e=0.37). The stellar atmospheres theory gives a value τ
=2/3 (it means two-times decreasing in intensity) for the boundary from which the continuum spectrum is
emitted. If cooler layer lies above the photosphere, it will absorb energy from the passing continuum flux.
Besides the general absorption there exist a selective one in the energy levels’ frequencies of the atoms and
ions composing the atmosphere. The resulting picture is typical stellar absorption spectrum (Fig.1).

Figure 1. Spectra around the hydrogen line Hα of the star αBoo (V= 0.16m, K2III) (left panel, normalized) and
around Hβ in B-supergiants of different luminosity class (right panel, raw data). Note the different widening of the
hydrogen lines due to different pressure in the atmospheres of different stars!

When the stellar atmosphere is more prolonged, as it is in the giant, supergiants and some hot B-stars, it can
be possible to observe spectral lines in emission. It superpose the unavoidable absorption line giving
different kinds of so called “P-Cyg”  profile – Fig.2.

Figure 2. “P-Cyg” type profile of Hα in the star HD190603 (V=5.6
m
, Sp B0-B1.5 Ia, “a shell star”). For

comparison the spectrum of the “normal” B-star HD 199216 (V=7.05m, B1II) is also presented. Also well seen are the
telluric absorption lines arising in the earth atmosphere due to the water molecules absorption.



The shape of the hydrogen lines is sensitive to the gas pressure and, therefore, to the gravitational potential
in the atmosphere. These lines can help us to derive the luminosity class of the star (see Fig.1, right). 

Due to the Doppler-effect the frequencies in the spectral line arising in moving volume shifted and deformed
the line-shape. So, we can study the different star motions looking at the line shape!

The “strength” (the intensity) of the lines gives us information (both qualitative and quantitative) about the
chemical abundance of the atmosphere. It is possible also, using the spectral lines, to investigate the
magnetic fields, if they present in the atmosphere.

1.3. General scheme of the astrophysical investigation

The based on earth ground observations astrophysical investigation is carried out following the next general
scheme (Fig. 3).

     The links:

   Photon collection  ⇒ Transformation ⇒ Registration ⇒ 

   ⇒ Analysis ⇒ Interpretation (+Theory) ⇒New knowledge

    The instrumentation:

Collector ⇒ Light analyser ⇒ Light detector  ⇒ 

⇒ Data analyser ⇒ Computer technique ⇒ Brain, paper, pen…

Figure 3. General scheme of the astrophysical investigation

The elements in this scheme have the following function:

The collector (telescope) has two-fold role:

1) to collect as much as possible energetic flux from sky sources in given solid angle;

2) to project the sky picture onto the focal plane with suitable for the scientific aim linear scale.

The light-analyser is a special device that can be placed as pre-focal (before the main mirror: objective
prism or grating, stellar interferometer, etc.), as focal (e.g., direct imaging camera, photometer and/or
polarimeter, spectrometer, etc.).

The light-detector is a physical medium that, under the radiation, changes its condition on exactly known
and stable law for any length of time or forever.

Up to the end of 80-es of 20th century the most spreaded detector was the photoemulsion. There are
countless glass plates in the observational archives all around the world and the information on most of them
still are unused! Despite numerous advantages (panoramic, big storage capacity, stable, etc.) the most
important shortcomings of the emulsions (non regularity, complex processing,  low DQE (Detective
Quantum Efficiency), low SNR (Signal-to-Noise-Ratio), non-linear response on the incoming light, complex



and expensive devices for deriving information, etc.) judged their disappearance when the new solid-state
detectors were developed and matured. 

The modern solid-state detectors, typical representative of them being CCD, have remarkable advantages in
comparison to the emulsion:

- great peak DQE (up to >90%);
- high linearity of the response
- great dynamic range (>100000);
- high SNR per pixel (depending of the integer-value of the ADC; so, 16-bit ADC fills the pixel with

65500 ADU, i.e., SNR=250 per pixel;
- direct numerical output;
- equal geometry (strong spatial homogeneity!);
- easy for maintenance (especially for the CCDs with Peltier-cooling);
- easy control and summation of the frames, improoving the noise characteristics.

The present disadvantages of the CCDs are:
- still smaller linear dimentions than that of the photoplates. So, the biggest single chip prodused by

DALSA (2006) has 111Mpxl and size of ~100x100 mm that is 25 times less than the area of the biggest
astroplate being in use. Combining several CCD chips in a mosaic it is possible to cover area quite
comparable with such a huge astroplate, but the price of such a device reaches M$-levels. 

- existance of parasitic signal sources, especially the cosmic spikes; they often limited the reasonable
exposure time to less than 30 minutes!

- more complex and expensive maintenance of the LN2-cooled CCDs.

The information-analyser is of need mainly when photo-plates are considered; it is a sophisticated device
(densitometer, comparator, etc.) which scans and digitises the “hidden” in the emulsion information. 

Of essential importance is to recognise that in every link of the considered process (including the
interpretation and the theory steps) parasitic noises are involved. They deform and deteriorate the signal and
the information and decrease the SNR. Some of these noise-sources are: 

- the earth atmosphere – the turbulence deforms the wave-front causing the so called “turbulent disk”
in the focal plane of the astronomical telescopes. The angular dimension of this disk is hundred times greater
than the diffraction image produced by the earth-based telescopes with aperture greater than, say 1-m. This
decreases the light-concentration in the focal plane (degrades the frequency-contrast-function). The
atmosphere degrades also the signal amplitude and makes it spectral selective (!); it disperses the “white”
light (especially on great zenith distances!), etc.;

- the aberrations of the telescope and spectroscope optics;

- the light-analyser itself (photometer, spectrograph, filter, polarimeter, etc.) has its own instrumental
noise-sources that degrade the signal. Here we can enumerate the electronic, thermal, and other noises; the
scattered light; the mechanical deformations and aberrations, etc.

- the detector is also noisy: the photo-emulsion scatters the light and the CCD camera has many noise-
sources, such as the photon, the thermal, the reading noises, the interference fringes, etc.

- the information-analyser also is noisy due to its own optics and electronics;

- the info-processing – e.g., every mathematical filtering losses info; the different software packages
can be based even on different philosophy of the data processing, etc. The theory also is not insured against
wrong conclusions, interpretations and “intervations” in the astrophysical investigations.

So that, in order to complete successfully the astrophysical investigation based on real observations,
numerous factors influenced the obtaining and the processing of the raw data must be taken into account.

2. THE BASIS OF THE ASTRO-SPECTROSCOPY
2.1. Physical processes dispersed the light
We shall begin with reminder some basic for the wave-optics conceptions:



- d i s p e r s i o n (from the Latin dispero = break up, intersperse among, intersperse between;
distribute) we call in general the way by which given physical system react to the outer influence.
Considering the light-wave propagation we distinguish the material dispersion (that characterizes the
dependence of the refracting coefficient from the wavelength) and the device dispersion – the ability of the
given physical system to separate by some way (spatial or temporal) the light-waves of different frequencies;

- monochromatic is an infinite sinus-wave with permanent frequency (wavelength); it has strongly
definite phase in given spatial point;

- coherent are waves with permanent phase-difference; all monochromatic waves with equal
frequencies are monochromatic;

- incoherent are waves with different phase-difference; it can be as waves with different λ, as also
waves with equal λ, but consisted of independent “packets” with random phases in the beginning and in the
end of every packet. 

- interference is the phenomenon of decreasing or increasing of the amplitude when several coherent
waves overlap. By summing flat coherent waves with phase difference ∆ω=0 their amplitudes are summed;
if the ∆ω=π then the amplitudes are subtracted. The intensity of the resulting wave is equal to the square of
the amplitude. If incoherent waves are summing we observe only an increase of the intensity – such waves
do not interfere!

- diffraction in a broad sense we call all phenomena manifesting a declination from the geometric
optics laws when the wave is propagated during given medium. Due to the diffraction the light can be found
even in the region of the geometric shadow; the waves can go round physical obstacles, they can “envelope”
surfaces, etc. 

A beam of “white” light collected by the telescope mirror consists of mix of waves with different
wavelengths and phases (i.e., incoherent). They are propagated in one and the same direction and in one and
the same geometric path. Hence, the different frequencies are not spatially separated! If such a beam meets a
physical medium that is able to separate spatially the particular waves we can register the frequency-
spectrum of this radiation. In the astrophysics mainly three methods for spatial separation of frequencies are
used (Fig. 4): refraction of the light on the boundary of two media; diffraction of the light on number of
openings; multi-beam interference due to multiple reflection.

Technically these methods are realised respectively by the following dispersing optical systems: prisms,
diffraction gratings and interefrometers of different kind. All these devices work properly in a parallel beam.

Figure 4. Optical phenomena of light dispersion

It can be noted that, especially for the IR-spectral range, some other physical principles can be used in order
to separate different spectral intervals of interest: Fourier-spectrometer, Spectrometer with Interferential
Selective Amplitude Modulation (SISAM), or Bragg fiber gratings (a fiber with core of variable refractive
coefficient). They could be used also in astronomy.

2.2. Principal design of a high-resolution astro-spectrometer



The principal structure of the “classic” astro-spectrometer (Fig. 5, left) and that of the coude-spectrograph of
the 2-m telescope at NAO “Rozhen” (Fig.5, right) includes the next elements: 

- entrance slit – two sharp knives from inox-steel. Their edges form constant in shape and position
light-source for illumination of the collimator during the exposure. The knives-plane is slightly sloped (for
our coude-spectrograph on ~12°) in relation to the optical axis and the polished surface of the slit reflects a
part of the star image allowing control of the slit-illumination during the exposure. The star image is focused
on the slit;

- collimator – it transforms the conical beam to parallel one and directed it to the disperser; 
- disperser – prism or grating;
- camera – optical device to project and register the spectrum;
- detector;
- calibration systems – for wavelength, flat-field or photometric calibrations; filters, etc.

Figure 5. Structure of a spectrometer (left panel) and a scheme of the coude-spectrograph in NAO “Rozhen”
(right panel)

2.3. Light-efficiency
Before more detail treatment of the spectral instruments lets to concentrate the attention on the very
important for the slit-spectroscopy question about the light efficiency and light-losses. The slit is illuminated
by focused light beam collected by the main mirror. The light losses here sometimes are discouragingly
great.

Example: light-losses in the coude-spectrograph of the 2-m RCC telescope at NAO “Rozhen”:

1. Loss due to reflections – every mirror-reflection from Al-surface suffers loss in intensity from ~10% (for
fresh Al-layer) until 20-25% for old one. Our coude-focus is formed after 5 reflections: main and secondary
mirrors (angle of incidence ~90°), two 45°-reflections from the flat mirrors in the declination axis of the
telescope and one flat reflection under ~70° from the deflecting mirror before the slit. Assuming reflection
coefficient of 0.8 we obtain that only ~33% (0.85) of the collected light reaches the entrance slit!

In the spectrograph itself we have: 3 mirror reflections (collimator, camera mirror and deflecting flat mirror
before the CCD-camera) and one spectral selective reflection from the grating. Assuming the same coefficient of
0.8, we finally obtain the efficiency due to the reflection-loss to be only 0.17. That means loss of 83% ! 

2. Geometrical losses – they are of several kinds:

a) – slit-loss: the scale on the slit is l/α=F sin1" [mm/"] and for our 2-m telescope with F=72000 mm we have a
scale 72000/206265=0.35 mm/" or ≈3 "/mm. As far as our seeing in coude often is just 2"-3" (~1 mm) and the
working slit is 0.2-0.3 mm, the slit-loss of light reaches once again 70-80% !

b) – shielding-loss (vigneting): for some working angles the cross-section (an ellipse) of the collimated beam
and the grating plane can overfill the grating length and for our gratings it can couse ~10% loss; similar losses
can couse the shielding by the groove shape for great angles of incidence.

c) – vigneting-loss on the slit due to de-focussing of the secondary mirror: as can be seen in Fig. 6 if the instant
focus do not coinside with the slit-plane, it is possible a part of the collimator can be shadowed. Besides the
light loss such a situation produces also positional errors when project the spectral lines on the detector plane! 



This situation is especially important for the coude-focus; due to the very long focal distance the position of the
instant focus strongly depends on the atmosphere conditions and the zenith distance to the object. The de-
focusing ∆F along the axis before the slit is 80(!) times greater than the axial shift of the secondary mirror ∆S.

 
Figure 6. Shadowing by the slit edge due to de-focused star image

d) – light-loss due to incorrect position and guiding of the star image on the slit: the atmosphere plays a role of
a prism for significant zenith distances. This phenomenon is known as “atmospheric dispersion”. Additionally
the coude-field of view rotates with the time, so that the position of the star image on the slit changes during the
exposure. So, if we expose certain spectral range, say, “red” and on the slit the “blue” one is placed, the light-
loss can be great or even we will register nothing!

The angular dimension (in angular seconds) of the atmospheric spectrum, expressed by the difference in the
zenith distance of the image in the boundary wavelengths (in microns) is:

∆z ≈0.335[1/( λ1)2 –1/(λ2)2]tgz.

For example, observing an equatorial star in the meridian from NAO “Rozhen” it will have z=φ≈42° and the
“visible” spectrum from 4000Å (0.4µ) till 8000Å (0.8µ) will be extended in 1.4" with linear size of 0.5 mm in
the coude-focus. It is almost twice greater than the working slit width. At a whole, the “visible” atmospheric
spectrum depends on z as ∆z ≈1.5" tgz and for zenith distance z=70° its angular size of 4" corresponds to a
length of 1.5 mm while the slit is only 0.3 mm wide! Hence, if we need a spectrum around 8000Å but during the
exposure the “blue” end is on the slit, we really will obtain nothing!

3. Light-loss due to the detector: the peak DQE of the present CCDs is far above 80% but in the end of their
working spectral range it can drop drastically (see Fig. 7). Assuming 70% as an average value for the most
spectral ranges of interest, we see another 30% loss in light!

Figure 7. DQE of the SITe 1024 CCD-chip

At a whole, the total light-efficiency of a “classic” coude-spectrograph like our in NAO “Rozhen” in the best
case will be a few percents (~3%)! In the “photographic” era the situation was much worse – the DQE of the
best astro-emulsions did not exceed 4%, so the total efficiency was only ~0.1% ! That is why a star of magnitude
V=6m needed 1-2 hour exposure time and the resulted SNR in the continuum was only 30-40.



2.4. The spectrograph optics

2.4.1. General construction and concordance of the spectrograph 
As it was already noted, the art of the astro-spectroscopy is an art of compromises. Why the astrophysicists
become reconciled with enormous light-losses in the stellar slit spectroscopy? Why we can not work, say,
with wider slit, for example?

The leading consideration here is the wish to work with high spectral resolution. But before to examine in
detail the spectrographs’ schemes we shall discuss the very important for the astrophysics matter of the
concordance of the parameters of the light-collector (the telescope) and the light-analyzer (the spectrometer
itself). It is obviously an outer for the spectral device co-ordination. The idea is clear –  as can be seen in
Fig.8 the practical rule will be: the spectrometer’ collimator must have the same relative aperture (focal ratio
or f-ratio) as the telescope optics for the given focus. If the diameter of the collimator is smaller we evidently
will loss light due to overfilling of the collimator. The opposite case of an under-filled collimator do not
affect the observations but unduly makes the optics more expensive.

Figure 8. Concordance between the telescope and the spectrograph

Example: what must be the parameters of a collimator for the coude-spectrograph of the 2-m RCC telescope at
NAO “Rozhen” if the f-ratio of the coude-focus is 1:36 and the gratings have a grooves’ height of 300 mm?

The collimated beam must fill exactly the grating hence the collimator’s diameter must be at least 300 mm.
From the concordance rule it follows that the f-ratio of the collimator must be 1:36 and for D=300 mm we
obtain a focal distance for the collimator Fcoll=300*36=10800 mm.

Lets return to the general scheme of the spectrometer (Fig. 5). The slit is placed in the focus point of the
collimator with aperture D. The collimated parallel beam of “white” light has the same diameter and reaches
the dispersing system under angle of incidence ψ. The disperser separates the individual beams for every
wavelenght and directs them in different diffracting angles φ. The “fan” of monochromatic parallel beams
(every one with its own, different, but close to D aperture!) is focused by the camera’ objective and forms the
spectrum of the incoming light on the detector’s surface. This picture actually is overlapping of countless (if
the source has continual spectrum) or is a number of monochromatic images (for linear spectrum) of the slit
opening. If Fcoll and Fcam are the focal distances of the collimator and the camera and s is the entrance slit’
width then s’ will be projected onto the detector as  

s'= s.g. Fcam / Fcoll ,

where g=cosψ/cosφ is known as “geometric magnification of the grating along the dispersion”. For the
classic astro-spectrographs g~1 (for our coude-gratings we have g~1.0-1.1)

The above adduced simple geometrical considerations lead us to the next concordance rule: that of the
entrance slit’ width and the size p of the sensor’ pixel (Fig. 9). 



Figure 9. Concordance of the slit width and the detector pixel
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The quantity bs = Fcoll/Fcam can be named “slit-widening scale” and for the stellar spectrometers it plays an
important role: as great is bs, as more wide can be the entrance slit, improoving the light-efficiency of the
facility! Here we meet one more inconsistency characteristic for the astro-spectroscopy: the camera
resolution depends evidently on the its focal length, i.e., the long-focal cameras are better in this sense, but it
follows also proportionally longer collimator focal distance, if we wish to keep the light efficiency
unchanged. The last requirement, however, raises the cost of the instrument, etc.

2.4.2. Diffraction grating and its equation

Let’s turn now to the physics of the light dispersion by a flat diffraction grating (DG). The reflecting DG is a
structure consisting of many, usually equal in width, parallel strips, ruled (engraved) on Al-coated glass
blank or produced by holographic method. 

Here the realm of the wave-optics begins but for simplification we shall use also “geometrical” approaches
and analogues. We shall illustrate the phenomenon in Fig. 10a by “transparent” grating but just the same
conclusion and expressions take place also for the most frequently used reflective gratings.

Figure 10. Principle scheme of a transparent diffraction grating (a) and blazed reflective phase grating (b)

The angles of incidence ψ and diffraction φ are read referring to the normal n to the main grating plane. They
are both positive if are placed on one and the same side to the normal. The beams with different wavelength
λ are diffracted under different angle and the longer waves the greater is the deviation (quite opposite to the
case of refraction in a prism!). For given angles of incident ψ and diffraction φ the total difference in the



optical path ∆ of the both endmost beams from one groove (or opening) for given wavelength λ (with its own
angle of diffraction φ=φλ!) will be

∆ = b(sinψ + sinφ),

where b is the actual width of the groove. The condition for maximum intensity is 

∆ = b(sinψ + sinφ) = k λ ,   k= 0, ±1, ±2 … 

The diffraction grating with length (base) of the ruled area B consists of finite number N grooves. So one
groove occupies space d:

d = B/N .

The quantity d is called “grating constant” or “groove period”. The more widely used is the “grooves
density” N1, given in lines-per-mm and equal to 1/d. For the visible spectrum the most widely used gratings
have lines-density from 300 to 1200 l/mm. The gratings used in the present astro-spectroscopy most often
are reflective and “blazed”, i.e., they have groove strips inclined to the grating plane under angle α (“blaze
angle”). This groove geometry allows the maximum light concentration in desired spectral order.

The geometry of the blazed grating is presented in Fig. 10b. The actual width b of the groove depends on λ
by the diffraction angle φ and can be smaller than the nominal one (note the shadowed area on the figure) for
some directions.  

The distribution of the intensity I (Fig. 10) as a result of the combined contribution of all grooves, i.e., after
the interference of the N beams in given direction (diffraction angle φ) is given by

I=(I0/N2). (sin2u/u2). (sin2Nv/sin2v) = F0(N). F1 (u). F2(N, v) .

F0 is the normalization term. The function F1 gives the diffraction of any separate groove and the argument
is  

u = π b(sinψ + sinφ)/ λ 

while the function F2 gives the interference of the N parallel beams and is decisive for the main grating
characteristics and for the position of the maximum.  Here the argument has similar look as for F1 but instead
of the working width b the grating constant d is used:

v = π d(sinψ + sinφ)/ λ

Nauhntrkx vd rg`kk g`ud ` ydqn,hmsdmrhsx vgdm `s kd`rs nmd ne sgd svn “`mftk`q,cdodmcdms” etmbshnmr F1
(u) and F2(N, v) becomes zero. The minimum-condition for F1 (u) is:

u=k π,        or

kλ = b(sinψ + sinφ), k = 1, 2, 3, ...

Because of the small value of b (for groove density 600 – 1800 mm-1 both b and d are of order of 1 µ) the
minima due to F1 (u) are extremely rear. It follows also from the great angular width of the diffraction
function (see Fig. a). Conversely, the great number of the grooves in the grating (e.g., for our holographic
grating with grooves area of 360 mm length and density of 1200 mm-1, N=432000) determines the frequent
appearance of minima of F2(N, v) (Fig.   b). In fact between the main maxima N-2 secondary maxima are
placed, but, being numerous, they practically are fully suppressed.  The condition for minimum of F2(N, v) is

Nv = n π , n ≠ kN, i.e., n to be non aliquot to N.

If n is aliquot to N, then v = k π and F2(N, v)  = N 2. Instead of minima, we shall have main maxima with the
condition

d (sinψ + sinφ) = k λ
This expression is known also as “diffraction grating equation”.

This expression shows that for given λ rays with wavelengths aliquot to λ diffracted and have a maximum in
the same direction! So the DG produces multiple spectra that is why the quantity k is called a spectral order.
From the grating equation immediately follows that |sinψ + sinφ| ≤ 2, so the working order of given grating
can not exceed a value



kmax=2d/λ .

Example: for a grating with density 1200 mm-1 the constant is d=0.83 µ and for wavelength λ = 6500Å =
0.65µ we shall have the limit kmax=2*0.83/0.65 =2.56 or for this wavelength this grating works only in 1st and
2nd orders (see Fig. 11). For the blue-violet light with λ =0.4µ, kmax=4.16 and the grating can work up to 4th

order.

Figure 10. Intensity distribution after interference of the beams in a diffraction grating

The question of what image the grating produces in the zero-order is of particular interest. Then the grating
works simply as flat mirror, superposing all wavelengths in one direction. We also can consider every flat
mirror as a grating with infinite density (or zero constant, d=0). Then the only working order will be kmax =
0. Unfortunately, just in the zero order the maximum energy is concentrated (Fig. 11). 

Figure 11.  Spectral orders of laser light (λ = 6328Å) passing through a transparent 1200 mm-1 diffraction
grating

It is necessary to put additional fase-difference to concentrate the intensity-maximum in other than zero
order. This is accieved by profiling the grooves’ shape in the “blazed” gratings (also called “phase gratings”)
– Fig. 9b. The additional phase difference in the optical path is equal to 2h/λ where h = d sinα is the groove
depth and α is the blaze angle. 

Example: if the the grating Baush&Lomb, 632 mm-1, α =14.7º from the grating set in NAO was not phase
one, (i.e., if α =0), the limiting order for λ = 6500Å must be kmax =4.86, i.e., 4th. For a grooves’ slope of ~15º
we have sin α = 0.25 and hence for this wavelength the grating will have a maximum in the 1st order.



2.4.3. Free spectral interval 
The free spectral range of a diffraction grating is defined as the largest bandwidth ∆λ in a given order, which
does not overlap the same bandwidth in a neighbour order.

If λ1<λ2 are the extremes of the spectrum band then overlapping will occur at the long wavelength end of the
spectrum when λ2 in order k is diffracted at the same angle as in order k+1. Conversely, overlapping will
occur at the short wavelength end when λ1 in order k coincides with λ2 of order k- 1. The required conditions
to avoid overlapping, is:

∆λ = λ2-λ1≥λ1/k   or  ∆λ = λ2-λ1≥λ2/(k-1) .   

Since λ1 <λ2, we may say that the free spectral range is equal to the shortest wavelength in the allowed
bandwidth divided by the order number.

2.4.4. Angular magnification of the grating. Angular and linear dispersion

It follows from the grating equation that for given λ certain increase in the incident angle correspond to
strictly definite increasing of the diffraction angle, i.e., the angular magnification g is simply the derivative
dφ/dψ. Differentiating the grating equation by constant λ we obtain

g = dφ/dψ = cosφ/cosψ.

Obviously, for the zero order (φ=-ψ) and for the auto-collimation scheme when the angles of incident and
diffraction are equal, g = 1.

The derivative by λ gives the angular dispersion dφ/dλ of the grating in order k for given incident angle: 
dφ/dλ = k/(dcosφ).

As can be seen, for small angles φ, i.e., for low spectral orders, the dependence of the dispersion of DG from
the diffraction angle φ is quite weak as far as the change of φ in these orders is in narrow range (0.1 – 0.2
rad). Conversely, the dispersion of the prism is caused by the variable refractive coefficient n (according to
the Hartman-formula it depends on wavelength as λ-2) and is strongly irregular and inconvenient in work.
From the above formula one can conclude that, observing the spectrum along the grating’s normal (called
“normal” spectrum) the dispersion remains constant and equal to k/(dcosφ)=k/d.

Example: lets consider the grating Baush&Lomb, 632 mm-1, α =14.7º in 1st order. The grating constant is
d=1.58 µ and the angular dispersion (with accuracy to cosφ) will be 1/1.58=0.63 rad/µ =0.000063 rad/Å=36 °/µ
or 36°*3600"/10000Å = 13"/ Å.

The angular dispersion determines the linear dispersion dl/dλ in the focal plane of the spectrograph’s
camera: 

dl/dλ = Fcam(dφ /dλ).

More often the reverse linear dispersion Dλ is used:

Dλ = dλ/dl = 1/Fcam(dφ /dλ).

Example: for the grating from the above example when the spectrum is registered in the 3rd camera with
Fcam=1900 mm (1.9*106 ) the realised reverse linear dispersion will be: Dλ≈1/(1.9*106µ ) 0.000063 rad) ≈ 1/120
Å/µ = 1/120/1000≈8.4 Å/mm.

2.4.5. Spectral lines curvature
Due to the finite size of the slit height the rays far from the optical axis fall to the main grating plane under
small angle β. The grating equation for these rays will be written as (sinψ + sinφ) =kλ/dcosβ. It is equivalent



to shorten the grating constant as dcosβ. In a result, for the inclined rays the diffraction angle is somewhat
greater, the angular dispersion too and the image of the straight entrance slit has a curvature on the focal
plane of the camera. For the diffraction grating the endmost points are displaced in longward side of the
wavelength scale (contrary to the case of prism!). The shape of the spectral lines due to this effect is almost
parabolic with a radius of curvature ρ in the centre

ρ = dFcamcosφ/kλ=Fcamcosφ/(sinψ + sinφ).

This effect increases with the spectral order and with the wavelength!
Example: the full height of the slit of the coude at Rozhen is 10 mm. Working with the big collimator
Fcoll=10800 mm we have angle β of only 0.025° or 1.5' and the effect is negligible (cos0.025°=0.9999996). The
displacement of the line-ends is only a few microns, much smaller than the pixel size (24 µ). But for echelle-
spectrometers working in high spectral orders (k=30 – 100) this effect is of importance. Also the effect must be
considered when the comparison line spectrum was registered. 

2.5. Energy distribution in the diffraction grating. Maximum of concentration
As it was shown the picture given by the DG is a result of two processes: diffraction from a single element
and interference of all N beams in given direction. Let’s consider a ruled grating with blaze angle α. Two
conditions must be performed simultaneously in order to achieve maximum energy concentration: a)- every
single element (groove) must reflect in zero order (when the angles of incidence and diffraction are equal in
modulus) in direction of the main difraction maximum for the whole grating; b)- the zero order for the whole
grating to be in the direction of the minimum for the single groove. It is clear that the normals to the grating
plane and to the single groove differ by angle α. For such a geometry it can be shown that the relation 

2 cos(ψ-α) sinα=kλ/d 
is fulfiled. This relation allows to calculate the blaze angle α if we know the incident angle ψ, the wavelength
λ and the spectral order k.

Another important relation connects the blaze angle α and the working width b of the groove: sin(ψ+α) –
sin(ψ-α) =2sinαcos ψ = λ/b. According to the values of these quantities the cutter for ruling the grating is
sharpened.

It can be shown that for such “phase”-grating the following expression is true:
ϕ=2α -ψ.

So the angle of diffraction when the intensity will be maximum is defined. For the autocollimation scheme,
when ϕ=ψ=α,  we obtain for the wavelength of the maximum reflectance the relation:

kλmax=2dsin α.

Example: In Fig. 12 the dependence of the wavelength λmax=(2dsin α)/k for different orders for gratings
with density 632 l/mm (such as the Baush&Lomb gratings of the NAO’ set) in autocollimation. So for
our grating with α=14.7° we read λmax(1st order) ≈ 8000 Å and for the grating with  α=22.3° -  a value
≈12000 Å for the 1st order. One can note also from the same figure that the 14.7°-grating can be used
only in the 1st and 2nd orders because the 3rd one lies in the near UV region stopped by the earth
atmosphere, while the second grating can successfully work in 3rd order too. As it will be shown
below these relations are displaced in the spectrographs working out of autocollimation mode!

Figure 12. Dependence of the wavelength of maximum reflection λmax in auto-collimation on the blaze angle for
different spectral orders for gratings with groove density of 632 lines/mm. The values of λmax for the 1st order are
denoted for two gratings.



The above cited relations are obtained for auto-collimation scheme when the angles of incidence and the
diffraction are equal (towards the grating’s plane) and the diffracted ray goes back to the collimator which
can play a role of camera mirror! The real coude-spectrographs more often are designed so, that the axes
from the grating to the collimator and to the camera make certain angle γ (see Fig. 5). For example, for our
coude this angle is γ=41° 45' for the big collimator and 43° for the small one. In the case γ≠0 and λa  as the
wavelength in auto-collimation, the wavelength of the maximum reflection are transformed to

λmax= λacos (γ/2).

The displacement can be significant. So, for the grating B&L, 632/14.7° in 1st order we have λa =8030 Å
while in our spectrograph with the big collimator λmax= 7503 Å. If this grating works with the small
collimator (D=200 mm)  than γ=43°. Then the displacement will differ by 32 Å for 1st order and by 16 Å for
2nd one from that for the big (D=300 mm) collimator.

In Fig. 13 the theoretical distribution of the refection by “our” grating B&L, 632/14.7° is compared with the
measured directly for other B&L grating with blaze angle 14.65°.

Figure 13. Calculated distribution of the reflection for a grating with groove density of 632 lines/mm and blaze angle
14.7° working in the coude-spectrograph with collimator D=300 mm (dots, circles and solid line) and the really
measured curves for grating B&L, 632 mm-1, 14.65°. The measured data were published for auto-collimation mode
and re-calculated for γ=41° 45'.

2.6. Evaluation of the parameters of a stellar coude-spectrograph
Now we are ready to evaluate the needed parameters of a coude-spectrograph like this for the 2-m RCC in
Rozhen.

The input parameters are: 
1. The focal distance of the coude-focus of the telescope: FT=72000 мм (D/FT=1:36);
2. The scale on the slit in the coude-focus: 1"=0.36 mm (working slit процеп s1" =0.36 mm);
3. The dome diameter: ~22 m;
4. Desired reverse linear dispersion in order k=1: say, Dλ ≈10 Å/мм;
5. Working spectral interval; from <4000 Å till  >10000 Å;
6. Detector pixel size: p≈0.020 mm (20 µ).

2.6.1. First approximation:
1. Choise of grating: it is known that most accessible on the market are gratings with grooves density

N1 ~ 600 or 1200 mm-1 (i.e., a constant d = 0.0017 mm = 17000 Å or  0.00085 mm = 8500 Å).

2. Such a grating will have angular dispersion dφ/dλ ≈ k/d:

dφ/dλ ≈1/17000 ≈ 6*10-5 rad/Å (or 1.2 *10-4 rad/Å);

3. Evaluating the dimensions of the camera:

Fcam=1/[Dλ (dφ/dλ)] = 1/(10*6*10-5) =105/60 ≈ 1700 mm;

4. Evaluating the dimensions of the collimator:

Fcoll = (s/p) Fcam = (0.360/0.020)*1700 >20000 mm=20 meters!



But such great focal distance is unacceptable because:

a) goes out of the dome-dimensions (20 m in diameter);

b) needs a diameter of the collimator (i.e., the size of the grating, too) D≈650mm (there is not so big
single-piece ruled gratings)!

Compromise: we limited ourself to the focal distance Fcoll = 10 m. Of course, this means that we must
decrease also twice the working width of the slit, not s=1" but with slit of 0.15 mm (<0.5"). So that we must
accept the necessity to loss light on the slit! 

As soon as we choose Fcoll≈10000 mm then its aperture will be around 300 mm. It is quite appropriate –
there exist gratings of such dimensions! Finally we choose a collimator with diameter 300 mm and focal
distance 300х36=10800 mm (note that these figures perfectly coincide with the real parameters of our
coude!)

5. Evaluating the blaze angle in autocollimation for the mean wavelength of our spectral range
λ=7000 Å:

tg α = λ/(2 Fcam Dλ) = 7000/(2.1700.10)=7/34≈0.20,   or α ≈12°.

This is an “ordinary” grating and in the then time (the early 70-es of the 20th century) catalogue of the firm
Baush&Lomb (Rochester, NY) we find a suitable offer: a family of phase (blaze) gratings with density of
632 l/mm and blaze angle near 14.7°, size along the groove 200 and 300 mm that works in 1st and 2nd orders.
Finally, we choose a grating Baush&Lomb, 632/14.7°, 300х360 mm! By the way, its price was 36000$!

Now the second approximation begins to precise the device we want to order.

2.6.2. Second approximation: 
1. Cameras: for maximum aperture of the beam 300 mm and moderate focal ratio, say 1:7, we obtain

for the biggest camera a focal distance of Fcam≈2000 mm [note that the real camera 3 in coude has
Fcam=1900 mm (D:F=1:6.3)]. Such a camera must be of Schmidt-type and will provide us a dispersion Dλ

=8.3 Å/mm in 1st order. The set of accieved dispersions usually is planned by coefficient of 2. So that it is
good if the second camera to give in the same order Dλ ≈15-16 Å/mm. It can be accieve by a camera with
Fcam=1000 mm (the real camera 2 of the spectrograph in NAO has Fcam=875 mm and provides a dispersion
about 18 Å/mm).

Following the same logic we can plan a third camera which focal distance could be about 500 mm. But for a
beam of 300 mm aperture the focal ratio becomes too high for normal production – 1:1.7. That is why it must
work only with smaller collimator, say, with D=200 mm. Then the camera will have D:F=1:2.5 that is easier
aim. The real camera in the spectrograph in NAO has Fcam=450 mm (1:2.25) and needs flatfielding lens just
before the focal plane because of great curvature of the initial Schmidt-focal-surface! 

2. Collimators: There will be better if our chosen collimator with D=300 mm and F=10800 mm is of
«of-axis» type with small angle (<4-5°) for easier and cheaper production. The camera considerations and
the budget-frames show that we must bye also gratings of size 200 mm. They will work properly with a
collimator with D=200 mm (and F=200*36=7200 mm). Hence we can order a second collimator with the
cited parameters.

3. Parameters of the other gratings: for more-short wavelengths (5000 Å) in the 2nd order (Dλ ≈ 4
Å/мм) will be of necessity a grating with blaze angle:

tg α = λ/(2 FcamDλ) = 5000/(2*1900*4)=7/34≅0.33  or α ≅18°. 

The same B&L catalogue offered a grating 632/22.3°, 200х300 mm, and the Russian firm GOI
(Gosudarstvenny Opticheskiy Institute=State Optical Institute) from Moscow offers similar grating having
density 600 mm-1 and blaze angle 28°. It has «bluer» reflection and works in orders 2-4. We immediately
buy both gratings, order the equipment, finish the funding and finally STOP our ruinous enthusiasm!

Thus our task to evaluate and order a suitable equipment for the 2-m telescope is realized!



3. SPECTROGRAPHS WITH CROSS-DISPERSION (ECHELLE
SPECTROGRAPHS)

3.1. Crossing the dispersion
The wish for higher resolving power  R=k.N with small apertures, i.e., with more compact spectrographs
(smaller and cheaper gratings!) has only one solution: to work in higher spectral orders k! One must not
forget that, because of the relation | sinψ + sinφ |<2, the maximum order for given λ, where difraction exist,
will be  k=2d/λ , i.e., in order given grating to work at least in the 1st  order its grating constant must satisfy
the relation: d>λ/2. 

Example: So, for λ =0.8µ we have d=1/2400=0.42 µ, and a grating with 1200 l/mm (d=1/1200=0.83 µ) can
work until the 2nd order. But a grating with 2400 l/mm CAN NOT SHOW A SPECTRUM AROUND
WAVELENGHT 1 µ , BECAUSE OF d=0.42 µ <0.5 µ! FOR λ>8500Å  SUCH A GRATING APPEARS AS A
MIRROR!!! A grating with 100 l/mm (d=10 µ), works for λ =1 µ up to order  k=20, and for λ =0.5 µ - up to
k=40. A very “coarse” grating of only 33 l/mm works for the same lambdas in orders from 60 till 120! Such
grating somewhat is easear for production (it has more “clear” surface of the grooves and the cutter wears less!).
But, in order to avoid the  “owershadowing” of the beams in such a great angles of difraction, it is necessary the
grooves itself to have great blaze-angles - up to 79°! The light-beam also comes from such a great angle-of-
incidence (see Fig.15).

From the grating equation d(sinψ + sinφ) = kλ we have kλ = k'λ' that determines the overlapping of spectra of
different orders. We can eliminate the undesirable intervals using filters, scanning monochromators or, most
radically, by crossing dispersion. 

Let’s write the expression for the reversed linear dispersion Dλ in the form (N1 is the groove density in mm-

1):

Dλ = dl/dλ= Fcam(kN1/cosφ)= Fcam/λ [(sinψ + sinφ)/cosφ].

It is clear that, for limited camera’s dimension (Fcam), the only way to enhance the linear dispersion is to
enlarge the angles of incidence and dispersion. For auto-collimation scheme (ψ=φ) we have 

sinψ = sinφ= kλN1/2.  

The possibilities here are scarce since the value of N1 is limited (at least for the ruling gratings) to ~2000
mm-1. So that the possibility to enhance the working spectral order k remains the last choice! But here we
meet the strong overlapping of the spectral orders…Remember that, for example, for λ=6000 and k=50 the
free spectral range is only 120 Å. The evidently solution is to separate in some way the different orders
spatially. This can be achieved by pre-dispersing of the white light before it to fall to the “main” disperser.
As can be seen in Fig.14, if the directions of light-dispersion are “crossed” we obtain a two-dimensional
picture of the spectrum consisting of many “portions” of different spectral intervals.

Figure 14. Scheme of crossing dispersions using a prism as a pre-disperser and a grating as a main disperser
(at left) and two diffraction gratings (at right).

The pre-disperser (PD) can be a prism with small refracting angle (α~10-20º) or a diffraction grating
working in 1st order. Both cases have their characteristics, advantages and disadvantages. The echelle-grating



(Fig.15) has low groove-density (several tens lines-per-mm) and very steep to the gratings-normal reflecting
strips. 

Figure 15. Scheme of echelle grating.

The present echelles have high blaze angle. They usually are called according to the value of their tgα. For
example, the gratings produced by the firm Milton Roy have tgα in the interval 2 – 4 (see the table below).
The variations of a in the both ends are <0.4%, and of the efficiency - till 2%!

Table: characteristics of the Milton Roy echelle-gratings of series “R”

      type α ° D mm L mm N1 mm-1

R2 (tgα=2) 63.5 390 876 28.2
R2.6 69.0 300 830 29.5
R4 76.0 200 800 30.6

Sgd hcd` enq `m dbgdkkd,fq`shmf v`r oqnonrdc ax C- G`qqhrnm 'LHS `mc A`trg%Knla( hm 0838- Sgd
qd`rnm v`r sn ots `m hmsdqldch`sd cduhbd enq nqcdqr,rdo`q`shnm adsvddm sgd b`o`ahkhshdr ne ` bnmudmhdms
CF `mc ne Lhbjdkrnm’r dbgdknm- Sgd k`rs cduhbd g`r dmnqlntr qdrnkuhmf power (R~1-2 000 000) but is
extremely heavy for production.

The most important characteristics of the cross-dispersion scheme are summarized below:

Focal plane geometry (see Fig. 16):

1. Linear distance between the orders - depends on the linear dispersion dh/dλ of the pre-disperser
(PD) and of the spectral distance ∆'λ produced by the echelle-grating: 

∆'h=∆'λ (dh/dλ). 

For two adjacent orders k and k+1 we have:

kλ=(k+1)(λ-∆'λ)=d(sinψ+sinφ). Hence, for ∆'λ<< λ, ∆'λ= λ/(k+1)=λ(λ – ∆'λ)/d(sinψ+sinφ) ~ λ2. Hence ∆'h ~
λ2 (dh/dλ). According to the kind of PD we have:

а) PD prism: dh/dλ ~ 1/λ2        and ∆'h ~ const

b) PD grating: dh/dλ ~ const  and ∆'h ~ 1/λ2 

 2.  Slope of the orders - depends on the relation between the linear dispersions of both pre-disperser
and the echelle:

tgθ= (dh/dλ)/(dl /dλ)             (see Fig. 16).

According to the kind of PD we have:

а) PD prism:     tgθ ~1/k.λ2

b) PD grating:  tgθ=N11/k2N12, (N1 - the number of lines per mm)



Figure 16. Scheme of echelle orders’ slope

The final FoV on the detector in an echelle-spectrograph (see Fig. 17) depends of the kind of PD: 

a) PD prism: dφ/dλ ~ dn/dλ ~1/λ2 : the spectral orders are curved (parabolas), and they  are condensed
toward the long-wavelenght end!  

b) PD grating: dφ/dλ~ const: the orders are stright lines with different slope, and they are condensed
toward the short-wavelenght end!  

Figure 17. Focal plane geometry in echelle-spectrographs with prism (at left) and grating (at right)  pre-disperser.

The principle design and the physical view and dimensions of an echelle astro-spectrograph are presented in
the Fig.18. The device is mounted on a thick polished granite plate and has a thermic insulated hood. The
approximate size of the granite table is about 1x1 m2.

Figure 18. General view (cover removed) and a scheme of the MUSICOS-type echelle spectrograph of Poznan
University, Poland.

3.2. Echelle-spectrograph UVES (VLT)

As an example in Fig. 19 we present the VLT-echelle spectrograph UVES – UV-Visual-Echelle-
Spectrograph (operating since 2003 in the Nesmyth-focus of UT2-KUEYEN). 



Figure 19. General view (cover removed) and a 3D-scheme of UVES.

UVES has 8 fibers: 2 “sky” and 6 “objects”. With a 1"-fibers this allows multi-object spectroscopy with R =
40000 in the region 4200 - 11000 Å. The spectrograph works in two “arms” – blue and red and its
characteristics are given in the table below:

Each of the “blue” and “red” echelle-gratings for this spectrograph is a mosaic of two single gratings with
characteristics given in the next table. Note the big length of the mosaics needed to match the long elliptic
shape of the cross-section of the falling to the grating collimated beam. Note also the huge difference
between the theoretical resolving power (~2.106!) and the working one (~105)!  This gives a good example
for the compromises that the astro-spectroscopists are forced to make in order to reach weaker limit
magnitude. The peak DQE of the CCDs for UVES reach 90% and in the ends of the working spectral
intervals the efficiency is not less than 50% in UV and is ~20% in the near IR. The first stellar spectra with
UVES were obtained in the late 2002 (Fig.20).



Figure 20. A set of test-spectrograms obtained with UVES.

4. NEW TENDENCIES IN ASTRO-SPECTROSCOPY
4.1. Multi-object spectroscopy
The mid-20th century tendency to build universal big telescopes now is abandoned. Now almost all big
projects for astronomical equipment are concentrated on the designing a specialized instrumentation.
According to the spectral observations the most advanced technique usually includes multi-object
capabilities (tens and even hundreds channels). The next generation wide-field instrumentation will grow the
number of simultaneously registered star-channels from the present ~500 to 4000-5000! As an example the
projects KAOS (Kilo Aperture Optical Spectrograph) for 8-m Gemini, WFMOS (Wide Field Multi-Object
Spectrograph) for 8.3-m Subaru or MUSE for VLT can be noted. These facilities will include a set of tens
identical spectrographs feeding each by tens or even hundred object-fibers.

4.2. 3-D spectroscopy
The next important tendency is called “3-D” or Integral-Field-Spectroscopy. Here the idea is to obtain a
spectrum from every “elementary element” of the 2-D field in the telescope’ focus. In fact so called “data



cube” is obtained. Using such a technique one can easely obtain, for example, the radial velocity “map” of
the whole FoV of the telescope! 

5. OPTIMISTIC CONCLUSIONS

The new instrumentation will increase drastically the information-flow from the telescopes and will need
new methods for processing and maintenance of the data. An element of the new organizing of our science is
the Virtual Observatory, giving an access to enormous data bases for multi-national astronomical
community.

Placing adequate spectral equipment on earth orbit or even on the Moon, it will be possibly to work with
greater resolving power and with greater efficiency than by the ground-based telescopes. The much greater
expenditures for such instrumentation will be, of course, easily justifiable by the value of the new
astrophysical data that surely will be obtained! 


